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Generating correlated networks from uncorrelated ones
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Given an ensemble of random graphs with a specific degree distribution, we show that the transformation
which converts these graphs to their line~edge-dual! graphs produces an ensemble of graphs with nearly the
same degree distribution, but with degree correlations and a much higher clustering coefficient. We also study
the percolation properties of these new graphs.
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I. INTRODUCTION

The oldest and best studied models of networks, wh
have the merit of being exactly solvable for many of th
properties, are the random graphs of Erdo¨s and Re´nyi @1,2#.
These graphs consist ofN nodes, any two of which are con
nected with a probabilityp and left unconnected with a prob
ability 12p. Many of the properties of these networks c
be easily derived by analytical means. Among them is
degree distribution of nodes, which turns out to be Pois
nian, the average shortest path between any two nodes w
is of the order of ln(N), and the onset of a phase transition f
developing a giant component which happens asp exceeds a
certain critical value.

Despite their exact solvability and their low diamete
these networks lack some of the other crucial properties
real life networks. In particular, it is well known that man
real networks, e.g., the World Wide Web, social networ
power grids, scientific and artistic collaborations, and neu
and metabolic networks, show clustering or transitiv
which is absent in the graphs of Erdo¨s and Re´nyi. Moreover,
many real networks do not possess Poissonian degree d
bution and intensive studies have been made to cons
models as close as to real networks@3–6# and to study dy-
namic effects, e.g., spreading of a contact effect, on th
@7,8#.

In the past few years an elegant theory has been de
oped to construct random graphs with desirable degree
tributions to mimic the degree properties of real networks
appears that Bender and Canfield@9,10# have been the first to
propose an algorithm for constructing a random graph wit
specific degree distribution. We will call the ensemble
graphs constructed in this way the Bender-Canfield
semble. It is remarkable that these graphs are still exa
solvable to a large extent@11#. However, these graphs sti
have two shortcomings. First, they do not show correlation
the degree of nearest neighbors and second, their cluste
coefficient vanishes in the largeN limit.
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It is important that the degree distribution does not det
mine by itself the existence or lack of correlations. For
specific degree distribution one may have or one may
have correlations. Moreover, it has been observed that co
lation is an essential feature of real networks which can
pear in different forms@12#. For instance, a high degree nod
may be connected to other high degree nodes~assortative
mixing!, to low degree nodes~disassortative mixing!, or with
equal probability to both types~neutral mixing! with differ-
ent resulting behaviors in networks@13–16#. For this reason
algorithms have been developed to produce correlated
works with certain degree distribution@6,12,17,18#.

In this paper, we apply a well known transformation
graph theory to the Bender-Canfield~BC! graphs and show
that the transformed graphs are both correlated and clust
in the largeN limit. Given a BC graphG with N nodes and a
degree distributionP(k), the line graph or edge-dual grap

of G denoted byG̃ is constructed as follows@19#: to each

edge ofG, a node ofG̃ is assigned. Any two nodes ofG̃ are
connected by an edge if the corresponding edges ofG are
incident on the same node ofG. We show that many of the
properties of these transformed networks can be obta
exactly or almost exactly from those of the original graph
We obtain general formulas for the degree distribution a
its correlations for the transformed graphs and will obta
also formulas for the clustering coefficients of these n
graphs. As examples, we apply our transformation to Bend
Canfield graphs with various degree distributions.

It has been shown by Newman that percolation on
graphs can be solved by a generating function method.
method is applicable due to the fact that in these graphs t
is no clustering. By applying the above transformation
these graphs, we can follow similar steps and solve perc

tion on G̃. The interesting point is that nowG̃ is a highly
clustered graph for which we can solve percolation.

The paper is structured as follows. In Sec. II, we give
brief review of the Bender-Canfield ensemble of rando
graphs having arbitrary degree distributions. In Sec. III,
discuss the transformation and derive various properties
general transformed graphs. In Sec. IV, we apply our gen
formulas to graphs with degree distributions of Poissoni
©2003 The American Physical Society07-1
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scale-free, and exponential types. We end the paper wi
conclusion.

II. BENDER-CANFIELD ENSEMBLE OF GRAPHS

Let G denote a graph withN edges andL links. Let also
the degree distribution of this graph be given by the funct
P(k), that is, the fraction of nodes withk neighbors be given
by P(k). There is an algorithm@10,11# for constructing
graphs whose degree distribution corresponds toP(k) for
large N. More specifically, given a degree sequen
(k1 ,k2 , . . .kN) corresponding to the desired degree distrib
tion P(k), one takes each nodei with ki loose ends~stubs!
and then connects each pair of stubs randomly until no lo
end remains. We call these types of graphs Bender-Can
or simply BC graphs. Thus, we speak of Poissonian
graphs or scale-free BC graphs to designate the degree
tribution used for their construction.

Many of the properties of BC graphs can be calcula
exactly. For example, the average number of first neighb
of an arbitrary node, denoted byz1 is given by

z1ª^k&5(
k

kP~k!. ~1!

It is useful to call a node withk emanating edges a node
typek. Then the probability of picking up a node of typek is
given byP(k). We can now ask a different question: What
the probabilityq(k) of picking up anedgewhich belongs to
a node of typek11. This is proportional to the fraction o
stubs coming out of nodes of typek11:

q~k!5
~k11!P~k11!

(
k

kP~k!

[
~k11!P~k11!

^k&
. ~2!

If we now follow a link to one of its ends the average num
ber of new links~the average ratio of the number of seco
to the first neighbors of an arbitrary nodez2 /z1) will be
given by

z2

z1
5(

k
kq~k!5

^k2&2^k&

^k&
. ~3!

As we will see this quantity will play a central role in man
of the later derivations.

We can also ask another question. What is the probab
P(k,k8) of picking up an edge which is common to a no
of type k11 and a node of typek811? This probability is
given by a product which is a reflection of the absence
correlations in these networks,

P~k,k8!5q~k!q~k8!. ~4!

One can also calculate the clustering coefficient of th
graphs. The result is@11#
04610
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z1

N S ^k2&2^k&

^k&2 D 2

5
1

N

~z2!2

~z1!3
. ~5!

It is important to note that for many kinds of degree dist
butions~i.e., those with finitez2 andz1), this clustering co-
efficient vanishes in the limit of large graph sizeN. It can
also be shown that the ratioz2 /z1 controls the existence o
an infinite cluster of connected nodes@11,20# for these
graphs. For (z2 /z1).1 there is an infinite cluster where th
average distance between two arbitrary nodes, is of o
ln(N). Recently, it has been found that almost all pairs
nodes have the same distance in this cluster@20#.

It will be convenient to define two generating function
for the distributions mentioned above

G0~ t !ª(
k

tkP~k!, G1~ t !ª(
k

tkq~k!5
1

z1
G08~ t !, ~6!

where G8(t)5dG(t)/dt and in the last relation we hav
used Eq.~2!. In terms of these generating functions, the a
erage number of first neighborsz1 and second neighborsz2
are simply given by

z15
d

dt
G0~ t !U t51 , z25z1

d

dt
G1~ t !U

t51

5G09~1!. ~7!

III. TRANSFORMATION OF BC GRAPHS

Consider a BC graphG with N nodes with a degree se
quence (k1 ,k2 , . . .kN), taken from a distributionP(k). We
can transform this graph to a new graphG̃ as follows. To
each link of the original graph, we assign a node of the n
graph. We connect any two nodes of the new graph if
corresponding links in the original graph have a node
common, see Fig. 1. The number of nodes and links ofG̃

denoted byÑ and L̃, respectively, are determined from th
degree distribution ofG. We note that each node of typek of

FIG. 1. The basic transformation. The filled circle and so

lines belong toG, and empty circles and dashed lines belong toG̃.
7-2
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G contributesk nodes andk(k21)/2 edges toG̃. Taking
care of the fact that the new nodes are counted twice, we

Ñ5
1

2 (
i 51

N

ki ,

~8!

L̃5
1

2 (
i 51

N

ki~ki21!.

As Fig. 2~a! shows the degree distribution of the new gra
G̃ is given by

P̃~k!5 (
r 1s5k

q~r !q~s!, ~9!

which is nothing but the probability that an arbitrary edge
G is connected to a total ofk edges at its two end poin
nodes.

There are simple relations between the generating fu
tions of P(k) andq(k) in G andG̃. Using Eq.~9!, we find

G̃0~ t !5(
k

tkP̃~k!5(
k

tk (
r 1s5k

q~r !q~s!

5(
r ,s

tr 1sq~r !q~s!5S G08~ t !

z1
D 2

. ~10!

From this last equation, we find

z̃1ª
d

dt
G̃0~ t !u t5152

^k22k&

^k&
52

z2

z1
. ~11!

In view of Eq. ~6!, we have

G̃1~ t !ª
1

z̃1

d

dt
G̃0~ t !5

G08~ t !G09~ t !

z1z2
. ~12!

However, since the graphG̃ is a clustered graph as w
will see, the ratio of average number of second to first nei
bors of an arbitrary node,z̃2/ z̃1 is not given by the expres
sion (kkq̃(k) as in Eq.~3!. Instead, we resort to a direc
counting. As shown in Fig. 2~b! if we follow a node ofG̃ to
the right, the number of first neighbors that we find is giv

FIG. 2. ~a! First neighbors of a node inG̃. ~b! Second neighbors

of a node inG̃ ~reachable from one of its sides!.
04610
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by z2 /z1 inherited fromG. Due to the low clustering ofG,
the number of second neighbors that we will meet will
(z2 /z1)2. Thus, the total number of second neighbors will
twice this value, that isz̃252(z2 /z1)2. The above reasoning
indeed shows thatz̃2 / z̃15z2 /z1 which in turn means that the
conditions@11# for the development of a giant component
G andG̃ are identical.

We now find the probabilityP̃(k,k8) of finding an edge
the end nodes of which havek andk8 other neighbors.

Looking at Fig. 3, the probability of finding an edge lik
AB in G̃ is equivalent to finding two edgesac andbc inci-
dent on the same nodec in G. For a moment suppose that n
other edge inG is incident onc. Then it is clear from Fig.~3!
that the nodesA andB will have k11 andk811 neighbors
in G̃ if the nodesa andb will have k11 andk811 neigh-
bors inG, respectively. Putting this together, we find that
this simple caseP̃(k,k8)5P(2)q(k)q(k8), where P(2)
comes from the probability of finding a node likec of degree
2 in G. In general, the nodec may be common tot other
edges inG. These extra edges contribute to the total num
of neighbors ofA andB, so that in order for the nodeA to
have a total ofk11 neighbors inG̃, the nodea needs only to
havek112t neighbors inG. A similar statement is true also
for the nodeB. Thus, instead of the factorq(k)q(k8), we
will have q(k2t)q(k82t). This should be multiplied by the
probability of finding a tripletacb which is proportional to
@(t12)(t11)/2#P(t12) and finally summed overt. The fi-
nal result is

P̃~k,k8!5(
t

~ t12!~ t11!

z2
P~ t12!q~k2t !q~k82t !,

~13!

In this way correlations are introduced into the graph
the sense thatP̃(k,k8) is no longer equal toq̃(k)q̃(k8).

It is also possible to calculate the clustering coefficient
G̃. It is clear that an edge with end point nodes of degrer

11 ands11 in G represents a node of degreer 1s in G̃.
Thus, the total number of potential connections among th

FIG. 3. The degrees of the nodesA andB in G̃ are correlated by
the vertexc in G.
7-3
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FIG. 4. ~a! Plots of D(k) for
several values ofl ~here kmax

51000) and~b! clustering coeffi-
cient.
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first neighbors is (r 1s)(r 1s21)/2. Of these possible con
nections, there are already a number of@r (r 21)#/21@s(s
21)#/2 connections present coming from the definition
G̃. Due to the clustering coefficient ofG, there are configu-
rations which increase this number for finite graphs. Ho
ever, since in the thermodynamic limit we know that the B
graphs have vanishing clustering coefficients, we need
worry about these contributions. Thus in the thermodyna
limit we have the following formula for clustering coefficien
of G̃:

C5(
r ,s

r ~r 21!1s~s21!

~r 1s!~r 1s21!
q~r !q~s!. ~14!

In this way the transformation has introduced a finite cl
tering coefficient into the BC ensemble of graphs. In t
following section, we will apply this transformation to se
eral well known ensembles with specific degree distrib
tions, namely, the Poisson, scale-free, and exponential
sembles.

Finally, let us consider percolation onG̃. For the sake of
simplicity, here we consider only site percolation but t
same analysis can be applied to bond percolation as well
each node ofG̃ be occupied with probabilityp and denote
the probability that an arbitrary node belongs to a cluste
sizen, by Pn . The generating function of this probability i
denoted byH(x), that is,H(x)5(n50

` Pnxn. Using the same
procedure as in Ref.@21#, we write the following expression
for H(x) :

H~x!512p1pxh2~x!, ~15!

where h(x) is the generating function for the number
nodes reachable if we follow the neighbors of the node
one of its sides say to the right~i.e., if we follow the corre-
sponding link onG to the right! @see Fig. 2~b!#. The expres-
sion for h(x) is obtained recursively as
04610
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h~x!5 (
k50

`

q~k!(
r 50

k S k
r D pr~12p!k2rhr~x!xr

5G1@xph~x!112p#. ~16!

Solution of these two equations will give us the probabiliti
Pn .

IV. EXAMPLES

A. Poisson graphs

For a Poissonian distribution, whereP(k)5(lk/k!)e2l,
it is readily verified using Eq.~2! that q(k)5p(k). We find
from Eq. ~9! that

P̃~k!5(
r

P~r !P~k2r !5
l r

r !
e2l

l (k2r )

~k2r !!
e2l5

~2l!k

k!
e22l,

~17!

where in the last step we have used the binomial distribut
Thus, the transformation maps a Poissonian graph to ano
Poissonian graph, whose average degree is twice the orig
one. However, this new graph is completely different fro
the original one in other respects. First, there is correlati
between the degree of neighbors and second, it has a fi
clustering coefficient even for large graphs~as N→`). To
see this, we use Eq.~13! to calculate for the specific case o
k5k8, the differenceD(k)ª P̃(k,k)2q̃(k)q̃(k) as a func-
tion of k for various values ofl. The result is shown in Fig
4~a!. Figure 4~b! shows the clustering coefficient@calculated
from Eq. ~14!# as a function ofl. It is clearly seen in this
and the other cases considered below that there are non
ishing correlations in the degree distributions. Also the
transformed graphs have appreciable value of cluster
Moreover, it is seen that the clustering coefficient approac
a maximum value of nearly 0.5 for large value of avera
connectivity. The reason is that in this limit an appreciab
fraction of the nodes ofG have a high degree approximate
equal toz1, and thus one can estimateC from Eq. ~14! as
7-4
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FIG. 5. ~a! D(k) and~b! C for
scale-free graphs.
-
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C;@2z1(z121)#/@2z1(2z121)#;0.5. This explanation ap
plies to the other examples discussed below.

B. Scale-free graphs

For scale-free graphs, we haveP(k)5@1/z(g)#k2g,
wherez(g)5(k51

` k2g. From Eqs.~1! and ~2!, we find z1

5z(g21)/z(g) and q(k)5(k11)12g/z(g21). We find
from Eq. ~9!

P̃~k!5
1

z2~g21!
(
s50

k

@~s11!~k112s!#12g. ~18!

It is seen that fork@1 the above sum is dominated by i
first and last terms. Thus, for largek, P̃(k) behaves likek12g

which in turn gives g̃5g21. Thus, the transformation
maintains the power law behavior of degree distribution
large degrees. To see this behavior more precisely, we g
04610
r
to

the continuum limit and convert the above sum into an in
gral which after a little rearrangement can be cast into
form

P̃~k!5~g22!2E
0

k

dxF S k

2
11D 2

2S x2
k

2D 2G12g

. ~19!

A change of variablex2k/25(k/211)sinu turns this inte-
gral into the form

P̃~k!52~g22!2S k

2
11D 322gE

0

a

cosu322gdu, ~20!

where sina5k/(k12). As an example for the caseg55/2,
we find

P̃~k!5
k

~k12!2Ak11
, ~21!
FIG. 6. ~a!D(k) and ~b! C for
exponential degree distribution.
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which as expected, behaves likek23/2 for large k. Like the
previous example, we calculated numericallyD(k) and C.
The results have been shown in Fig. 5.

C. Exponential graphs

Finally, let us consider exponential distributionsP(k)
5Ae2k/k0, whereA512e21/k0 is a normalizing factor. We
find from Eq.~2! q(k)5@A2/(12A)#(k11)e2(k11)/k0. Us-
ing Eq. ~9!, we find

P̃~k!5
A4

~12A!2
e2(k12)/k0(

s50

k

~s11!~k112s!. ~22!

Converting the sum to integral, we find

P̃~k!5
A4

~12A!2
e2(k12)/k0S k3

6
1k21kD . ~23!

We see that transformation does not change the cutoff v
k0 but produces some polynomial terms.

In Fig. 6, we display the correlation and the clusteri
coefficient for this type of degree distribution, using Eq
~13! and ~14!.
,

v.

04610
ue

.

V. CONCLUSION

We have shown that the line~edge-dual! graphs of uncor-
related network with low clustering, produces new correla
networks with a considerable clustering. The small wo
property of these graphs is not affected by this transform
tion, since the shortest path on two nodes ofG is almost the
same as the shortest path on two incident links on th

nodes onG or two nodes onG̃. Thus, the transformed en
semble of graphs resemble more closely the real netwo
while still being solvable in many respects. Moreover, it w
be possible to use this transformation and solve dyna
processes on these new graphs. For example, we have s
how site percolation can be solved on these transform
graphs.

This transformation can also be applied to already co
lated networks. Moreover, we have considered only the
terministic form of the transformation. In some cases, it m
be useful to introduce a stochastic parameter in the trans
mation to have more degree of freedom. That, is the node
the transformed graphG̃, can be connected with a probabi
ity b if the corresponding edges inG have a common node
We hope to investigate these issues in subsequent work
21.
t

ev.

rint

rint

tts,
@1# P. Erdös and A. Re´nyi, Publ. Math. Inst. Hung. Acad. Sci.5, 17
~1960!.

@2# B. Bollobas, Random Graphs~Academic Press, London
1985!.

@3# R. Albert and A.-L. Barabasi, Rev. Mod. Phys.74, 47 ~2002!.
@4# S.H. Strogatz, Nature~London! 410, 268 ~2001!.
@5# D.J. Watts and S.H. Strogatz, Nature~London! 393, 440

~1998!.
@6# S.N. Dorogovtsev and J.F.F. Mendes, Adv. Phys.51, 1079

~2002!.
@7# M. Kuperman and G. Abramson, Phys. Rev. Lett.86, 2909

~2001!.
@8# R. Pastor-Satorras and A. Vespignani, Phys. Rev. E63, 066117

~2001!.
@9# E.A. Bender and E.R. Canfield, J. Comb. Theory, Ser. A24,

296 ~1978!.
@10# M. Molloy and B. Reed, Random Struct. Algorithms6, 161179

~1995!.
@11# M.E.J. Newman, S.H. Strogatz, and D.J. Watts, Phys. Re
 E

64, 026118~2001!.
@12# M.E.J. Newman, e-print cond-mat/0209450.
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