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Generating correlated networks from uncorrelated ones
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Given an ensemble of random graphs with a specific degree distribution, we show that the transformation
which converts these graphs to their liege-dual graphs produces an ensemble of graphs with nearly the
same degree distribution, but with degree correlations and a much higher clustering coefficient. We also study
the percolation properties of these new graphs.
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[. INTRODUCTION It is important that the degree distribution does not deter-
mine by itself the existence or lack of correlations. For a
The oldest and best studied models of networks, whiclspecific degree distribution one may have or one may not
have the merit of being exactly solvable for many of theirhave correlations. Moreover, it has been observed that corre-
properties, are the random graphs of Erd@md Rayi [1,2]. lation is an essential feature of real networks which can ap-
These graphs consist df nodes, any two of which are con- pear in different form$12]. For instance, a high degree node
nected with a probability and left unconnected with a prob- may be connected to other high degree no@essortative
ability 1—p. Many of the properties of these networks canmixing), to low degree nodelisassortative mixing or with
be easily derived by analytical means. Among them is thexqual probability to both typegieutral mixing with differ-
degree distribution of nodes, which turns out to be Poissognt resulting behaviors in networks3—16. For this reason
nian, the average shortest path between any two nodes Whigflyorithms have been developed to produce correlated net-
is of the order of In), and the onset of a phase transition for \,qrks with certain degree distributid®,12,17,18.
developing a giant component which happenp asceeds a In this paper, we apply a well known transformation in

cerItDain c_:ritical yalue. abili 4 their low di graph theory to the Bender-CanfiglHC) graphs and show
th espltte\th I?Irl exsct SO vaf Lr']ty at?] their. ?W |arnt_eter, at the transformed graphs are both correlated and clustered
ese networks fack some of the other crucial properties Gf, y,q largeN limit. Given a BC graphG with N nodes and a

real life networks. In particular, it is well known that many S .
real networks, e.g., the World Wide Web, social networks,degree distributiorP(k), the line graph or edge-dual graph

power grids, scientific and artistic collaborations, and neuraPf G denoted byG is constructed as followkl9]: to each
and metabolic networks, show clustering or transitivity edge ofG, a node ofG is assigned. Any two nodes & are
which is absent in the graphs of Esxland Rayi. Moreover, connected by an edge if the corresponding edge§ afre
many real networks do not possess Poissonian degree distfircident on the same node G We show that many of the
bution and intensive studies have been made to construgfoperties of these transformed networks can be obtained
models as close as to real netwofs-6] and to study dy- exactly or almost exactly from those of the original graphs.
namic effects, e.g., spreading of a contact effect, on themye optain general formulas for the degree distribution and
[7.8]. its correlations for the transformed graphs and will obtain
In the past few years an elegant theory has been develysq formulas for the clustering coefficients of these new

oped to construct random graphs with desirable degree di%jraphs. As examples, we apply our transformation to Bender-
tributions to mimic the degree properties of real networks. It=anfield graphs with various degree distributions.

appears that Bender and Canfifdl0] have been the first to It has been shown by Newman that percolation on BC

propose an algorithm for constructing a random graph with a . .
specific degree distribution. We will call the ensemble Ofgraphs can be solved by a generating function method. The

graphs constructed in this way the Bender-Canfield en_[nethod is applicable due to the fact that in these graphs there

semble. It is remarkable that these graphs are still exactl? no clustering. By applymg_th_e above transformation to

solvable to a large exterit1]. However, these graphs still these graphs, we can follow similar steps and solve percola-

have two shortcomings. First, they do not show correlation ifion on G. The interesting point is that no@ is a highly

the degree of nearest neighbors and second, their clusteridustered graph for which we can solve percolation.

coefficient vanishes in the lardé limit. The paper is structured as follows. In Sec. I, we give a
brief review of the Bender-Canfield ensemble of random
graphs having arbitrary degree distributions. In Sec. lll, we

*Electronic address: ramzanpour@sharif.edu discuss the transformation and derive various properties of
"Electronic address: vahid@sharif.edu general transformed graphs. In Sec. IV, we apply our general
*Electronic address: mashaghi@ibb.ut.ac.ir formulas to graphs with degree distributions of Poissonian,
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scale-free, and exponential types. We end the paper with a
conclusion.

1. BENDER-CANFIELD ENSEMBLE OF GRAPHS

Let G denote a graph wittN edges and. links. Let also
the degree distribution of this graph be given by the function
P(k), that is, the fraction of nodes withneighbors be given
by P(k). There is an algorithn{10,11 for constructing
graphs whose degree distribution correspond$t&) for
large N. More specifically, given a degree sequence
(kq,ks,, .. .ky) corresponding to the desired degree distribu-
tion P(k), one takes each nodewith k; loose endgstubs
and then connects each pair of stubs randomly until no loose
end remains. We call these types of graphs Bender-Canfield
or simply BC graphs. Thus, we speak of Poissonian BC
graphs or scale-free BC graphs to designate the degree dis- _ _ ] _ _
tribution used for their construction. FIG. 1. The basic transformation. The filled circle and solid
Many of the properties of BC graphs can be Ca|cu|atedines belong taG, and empty circles and dashed lines belong‘:to
exactly. For example, the average number of first neighbors

of an arbitrary node, denoted lzy is given by Lz <k2>—<k>> 2_ 1 (2,)? -
N <k>2 N (21)3.
Zl::<k>:2k kP(k). @ It is important to note that for many kinds of degree distri-

butions(i.e., those with finitez, andz;), this clustering co-

It is useful to call a node withk emanating edges a node of €fficient vanishes in the limit of large graph sige It can
typek. Then the probability of picking up a node of tykés ~ @lS0 be shown that the ratiy/z; controls the existence of
given byP(k). We can now ask a different question: What is @0 infinite cluster of connected nod¢s1,2Q for these
the probabilityq(k) of picking up anedgewhich belongs to graphs. For £,/z;)>1 there is an infinite cluster where the

a node of typek+ 1. This is proportional to the fraction of average distance between two arbitrary nodes, is of order
stubs coming out of nodes of typer 1: In(N). Recently, it has been found that almost all pairs of

nodes have the same distance in this clug6t.
It will be convenient to define two generating functions

(kt DP(k+1) E(k+ DP(k+1) (2)  for the distributions mentioned above

ZK kP(K) (k)

ak)=

1
Go(t):=2 tP(K), Gy(t):=2] thq(k)=_-Go(t), (6)
If we now follow a link to one of its ends the average num- “ “ !
ber of new links(the average ratio of the number of second\yhere G’(t) =dG(t)/dt and in the last relation we have
to the first neighbors of an arbitrary nodg/z;) will be  ysed Eq/(2). In terms of these generating functions, the av-
given by erage number of first neighbors and second neighbom
() — (k) are simply given by

Z, ke)y—(k

7, =2 ka0 =" (3 g g ”
leaeo(t) t=1, Zzzzlael(t) =Gp(1). ()

As we will see this quantity will play a central role in many =t

of the later derivations.
We can also ask another question. What is the probability Il. TRANSFORMATION OF BC GRAPHS

P(k,k’) of picking up an edge which is common to a node  consider a BC grapi® with N nodes with a degree se-

of typek+1 and a node of typ&’+1? This probability is  quence k; ks, . . .ky), taken from a distributiorP(k). We

given b_y a product which is a reflection of the absence Ofcan transform this graph to a new grahas follows. To
correlations in these networks,

each link of the original graph, we assign a node of the new
graph. We connect any two nodes of the new graph if the
P(k,k")=q(k)q(k’). (4)  corresponding links in the original graph have a node in
common, see Fig. 1. The number of nodes and link&of
One can also calculate the clustering coefficient of theselenoted byN andL, respectively, are determined from the
graphs. The result igl1] degree distribution ofs. We note that each node of tygef
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FIG. 2. (a) First neighbors of a node &. (b) Second neighbors

of a node inG (reachable from one of its sides

G contributesk nodes andk(k—1)/2 edges toG. Taking

PHYSICAL REVIEW &7, 046107 (2003

care of the fact that the new nodes are counted twice, we find

=52 ki,

I\)IH

8

1 N
EZEZ ki(ki—1).

FIG. 3. The degrees of the nodésindB in G are correlated by
the vertexc in G.

by z,/z, inherited fromG. Due to the low clustering o6,
the number of second neighbors that we will meet will be
(z,/24)?. Thus, the total number of second neighbors will be

twice this value, that ig,=2(z,/z;)?. The above reasoning
indeed shows that, /7, =z,/z, which in turn means that the

As Fig. 2a) shows the degree distribution of the new graphcondltlons[ll] for the development of a giant component in

G is given by

=HES:k q(r)a(s), (9)

G and G are identical.

We now find the probabilityP(k,k’) of finding an edge
the end nodes of which haveandk’ other neighbors.
Looking at Fig. 3, the probability of finding an edge like

AB in G is equivalent to finding two edgesc andbc inci-

which is nothing but the probability that an arbitrary edge indent on the same noasdn G. For a moment suppose that no
G is connected to a total df edges at its two end point other edge irG is incident onc. Then it is clear from Fig(3)

nodes.

that the node#é\ andB will have k+1 andk’+1 neighbors

There are simple relations between the generating funGy, & if the nodesa andb will have k+1 andk’+1 neigh-

tions of P(k) andq(k) in G andG. Using Eq.(9), we find

t>=§ th><k>=2k th > amacs)

r+s=

0
—Etf+5q<r>q<s) ( °1 ) (10)

From this last equation, we find

El::aéo(t)|t=1=2T=2;l' (11)

In view of Eqg.(6), we have

d z Go(t)Gy(t)

Gy(t) == dt Go(t)= B (12

However, since the grapB is a clustered graph as we

bors inG, respectively. Putting this together, we find that in
this simple caseP(k,k’)=P(2)q(k)q(k’), where P(2)
comes from the probability of finding a node likeof degree

2 in G. In general, the node may be common td other
edges inG. These extra edges contribute to the total number
of neighbors ofA andB, so that in order for the noda to

have a total ok+ 1 neighbors irG, the nodea needs only to
havek+ 1—t neighbors inG. A similar statement is true also
for the nodeB. Thus, instead of the factay(k)q(k’), we
will have gq(k—t)q(k’ —t). This should be multiplied by the
probability of finding a tripletacb which is proportional to
[(t+2)(t+1)/2]P(t+2) and finally summed over The fi-
nal result is

P(k,k')= 2

t+2)(t+1
( )( ) P(t+2)q(k—t)a(k’—t),

(13

In this way correlations are introduced into the graph in

will see, the ratio of average number of second to first neighthe sense tha®(k,k’) is no longer equal tg(k)q(k’).

bors of an arbitrary node,/z, is not given by the expres-

It is also possible to calculate the clustering coefficient of

sion 3,kq(k) as in Eq.(3). Instead, we resort to a direct G. It is clear that an edge with end point nodes of degree

counting. As shown in Fig.(®) if we follow a node ofG to

+1 ands+1 in G represents a node of degree s in G.

the right, the number of first neighbors that we find is givenThus, the total number of potential connections among these
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first neighbors isi(+s)(r +s—1)/2. Of these possible con- * Kk
nections, there are already a number| ofr —1)]/2+[s(s h(x)= >, q(k) >, (r>pf(1—p)k’hr(x)xr
—1)]/2 connections present coming from the definition of k=0 r=0
G. Due to the clustering coefficient &, there are configu- =G,[xph(x)+1—p]. (16)

rations which increase this number for finite graphs. How-

ever, since in the thermodynamic limit we know that the BCSolution of these two equations will give us the probabilities
graphs have vanishing clustering coefficients, we need ndt,.

worry about these contributions. Thus in the thermodynamic

limit we have the following formula for clustering coefficient IV. EXAMPLES
of G: A. Poisson graphs
F(r—1)+s(s—1) For a Poissonian distribution, wheR{k) = (\"/k!)e ™,
C:E q(r)q(s). (14) it is readily verified using Eq(2) thatq(k)=p(k). We find
rs (r+s)(r+s—1) from Eq. (9) that

In this way the transformation has introduced a finite clus-ls(k)zz P(r)P(k—r):)\—re"‘ N e‘}‘=(2)\)ke‘2}‘

tering coefficient into the BC ensemble of graphs. In the T r! (k—r)! k! '

following section, we will apply this transformation to sev- (17)

eral well known ensembles with specific degree distribu-

tions, namely, the Poisson, scale-free, and exponential efjthere in the last step we have used the binomial distribution.

sembles. Thus, the transformation maps a Poissonian graph to another
Finally, let us consider percolation @b. For the sake of Poissonian graphz whose average degree is tvvipe the original

simplicity, here we consider only site percolation but theONe- quever, th|s new graph is co_mpletely Qn‘ferent frpm

same analysis can be applied to bond percolation as well. L Ige original one in other re;pects. First, there is correlatpn_s

each node of5 be occupied with probabilitp and denote etween the degree of neighbors and second, it has a finite

- ; lustering coefficient even for large graptes N—x). To
the probability that an arblltrary noqe belongs toa C".J.Ste.r %ee this, we use Eq13) to calculate for the specific case of
sizen, by P,,. The generating function of this probability is

- oo - k=k’, the differenceD (k):=P(k,k) —q(k)q(k) as a func-
denoted byH(x), thatis,H(x) ==, _,P.x". Using the same . . L
procedure as in Ref21], we write tt?e following expression tion Of.k for various values ok. Thg result IS _shown in Fig.
for H(x) : 4(a). Figure 4b) shows th_e clusterln_g coefﬁuefctalcqlateq
from Eq. (14)] as a function of\. It is clearly seen in this
5 and the other cases considered below that there are nonvan-
H(x)=1-p+pxh*(x), (19  ishing correlations in the degree distributions. Also these
transformed graphs have appreciable value of clustering.
where h(x) is the generating function for the number of Moreover, it is seen that the clustering coefficient approaches
nodes reachable if we follow the neighbors of the node ira maximum value of nearly 0.5 for large value of average
one of its sides say to the rigfite., if we follow the corre- connectivity. The reason is that in this limit an appreciable
sponding link onG to the righ} [see Fig. 2)]. The expres- fraction of the nodes o0& have a high degree approximately
sion forh(x) is obtained recursively as equal toz;, and thus one can estimagfrom Eqg. (14) as
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FIG. 5. (a) D(k) and(b) C for
scale-free graphs.
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C~[2z,(z,—1)]/[22,(2z;—1)]~0.5. This explanation ap- the continuum limit and convert the above sum into an inte-

plies to the other examples discussed below. gral which after a little rearrangement can be cast into the
form
B. Scale-free graphs K Kk 2 Kk\2]1-7
D — 2
For scale-free graphs, we have(k)=[1/{(y)]k ?, P(k)=(y=2) fodx (2+1 X 2) (19

where {(y)=2,_,k™”. From Egs.(1) and(2), we find z,
={(y=1)/¢(y) and q(k)=(k+1)""7/{(y=1). We find A change of variablec—k/i2=(k/2+ 1)sin@ turns this inte-
from Eq. (9) gral into the form

k

- 1
p(k):7) > [(s+1)(k+1-9)]'7. (18 P(k)=2(y—2)?

3-2y rq
_ 3-2y
2(y—1) 0 2+1 fcosa de, (20

0

It is seen that folk>1 the above sum is dominated by its Where sitx=k/(k+2). As an example for the casg=5/2,
first and last terms. Thus, for largeP(k) behaves like~> W€ find
which in turn givesy=y—1. Thus, the transformation

maintains the power law behavior of degree distribution for P(k)= ——————, (21)
large degrees. To see this behavior more precisely, we go to (k+2)%Vk+1
a) D(k) ko5 e D)
10»3 Ko= 20 -m e o=
10 0.5 R
10% 0.4 -_
- FIG. 6. (aD(k) and (b) C for
¢ [ exponential degree distribution.
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which as expected, behaves like®? for large k. Like the V. CONCLUSION
previous example, we calculated numericallyk) and C.
The results have been shown in Fig. 5. We have shown that the linedge-dual graphs of uncor-
related network with low clustering, produces new correlated
C. Exponential graphs networks with a considerable clustering. The small world

Finally, let us consider exponential distributiom(k) property of these graphs is not affected by this transforma-
—Ae ¥k, whereA=1—e o is a normalizing factor. We tion, since the shortest path on two nodessaf almost the

find from Eq.(2) q(k)=[A2/(1—A)](k+1)e~k+Dko ys. ~same as the shortest path on two incident links on these
ing Eq. (9), we find nodes onG or two nodes orG. Thus, the transformed en-
semble of graphs resemble more closely the real networks,

B k)= A4 —(k+2)/k02k Dkl 29 while still being solvable in many respects. Moreover, it will
( )—(1_—A)2e 2 (st1)(k+1=5). (22 pe possible to use this transformation and solve dynamic
processes on these new graphs. For example, we have shown
Converting the sum to integral, we find how site percolation can be solved on these transformed
graphs.
~ 4 ~(k+ 2k k3 5 This transformation can also be applied to already corre-
P(k)= me o\ g TkHk. (23 |ated networks. Moreover, we have considered only the de-

terministic form of the transformation. In some cases, it may

We see that transformation does not change the cutoff valuge useful to introduce a stochastic parameter in the transfor-

In Fig. 6, we display the correlation and the clusteringthe transformed grapB, can be connected with a probabil-
coefficient for this type of degree distribution, using Egs.ity b if the corresponding edges & have a common node.

(13) and (14). We hope to investigate these issues in subsequent works.
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